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ABSTRACT: We study the behaviour of the string loop corrections to the N = 1 4D
supergravity Kéahler potential that occur in flux compactifications of IIB string theory on
general Calabi-Yau three-folds. We give a low energy interpretation for the conjecture
of Berg, Haack and Pajer for the form of the loop corrections to the Kéahler potential.
We check the consistency of this interpretation in several examples. We show that for
arbitrary Calabi-Yaus, the leading contribution of these corrections to the scalar potential
is always vanishing, giving an “extended no-scale structure”. This result holds as long
as the corrections are homogeneous functions of degree —2 in the 2-cycle volumes. We
use the Coleman-Weinberg potential to motivate this cancellation from the viewpoint of
low-energy field theory. Finally we give a simple formula for the 1-loop correction to the
scalar potential in terms of the tree-level Kéahler metric and the conjectured correction to
the Kéhler potential. We illustrate our ideas with several examples. A companion paper

will use these results in the study of Kéhler moduli stabilisation.
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1. Introduction

Four-dimensional effective actions have played a major role in addressing the moduli sta-
bilisation problem of string compactifications (for recent reviews with many references
see I, B]). Most of these efforts rely on Calabi-Yau backgrounds with fluxes of RR fields
for which a worldsheet understanding of string interactions is not available and the effec-
tive action approach is the only reliable tool at present to study the moduli dynamics. For
moduli stabilisation and the study of other low-energy and cosmological implications, it is
then important to have control on the N' = 1 supergravity effective actions associated to
string compactifications.

The Kéahler potential K is the least understood part of these four-dimensional effective

actions. There has been substantial progress in determining the tree-level structure of the



Kahler potential as a function of the many moduli fields appearing in arbitrary Calabi-
Yau compactifications []. However, unlike the superpotential W, the lack of holomorphy
implies that the Kéhler potential can receive corrections to all orders in the o/ and g
expansions. The presence of no-scale structure in the Kéhler potential makes understanding
the Kahler corrections particularly pressing, as it is the corrections that give rise to the
leading perturbative terms in the scalar potential.

Mirror symmetry and the underlying A/ = 2 structure was used to extract the leading
order o corrections [[]. Explicit string amplitude calculations to determine the loop cor-
rections to K are not available for general fluxed Calabi-Yau compactifications, and only
simple unfluxed toroidal orientifold cases have been used for concrete computations [f].

Despite the difficulty of explicitly computing loop corrections in general Calabi-Yau
flux backgrounds, given their importance it is necessary to try and go as far as possible. In
this respect we observe that there is an easier and a harder part to computing the form of
loop corrections. The easier part involves the parametric scaling of moduli that control the
loop expansion - in IIB these are the dilaton, which controls the string coupling, and the
Kahler moduli, which controls the gauge coupling on D7 branes. The harder part involves
the actual coeflicients of the loop expansion, which depend on the complex structure moduli
and would require a explicit string computation. This article focuses entirely on the ‘easier’
part; however as the Kahler moduli are unstabilised at tree-level, such knowledge is very
important for moduli stabilisation.

Recently, Berg, Haack and Pajer (BHP) [[] gave arguments for the general functional
dependence of the leading order loop corrections to K on the Kahler moduli. By comparing
with the toroidal orientifold calculations and the standard transformations required to go
from the string frame, where string amplitudes are computed, to the physical Einstein frame
that enters the supergravity action, they conjectured the parametric form of the leading
corrections for general Calabi-Yau compactifications as a function of the Kéahler moduli.
As mentioned above, it is this dependence (on the Kahler moduli) that is more relevant
for moduli stabilisation, as the dilaton and complex structure moduli are usually stabilised
directly from the fluxes and it is only the Kéhler moduli that need quantum corrections to
the scalar potential to be stabilised. These quantum corrections include non-perturbative
corrections to the superpotential W (since W is not renormalised perturbatively [f]), o/
and string loop corrections to K. Non-perturbative corrections to K are subdominant with
respect to the perturbative corrections. It is then of prime importance to have control on
the parametric form of the quantum corrections to K.

In this article we study in detail the leading order loop corrections to K conjectured by
BHP. We provide a low-energy interpretation of this conjecture and give a general argument
that, with the conjectured form, the leading loop corrections to the Kéahler potential cancel
at leading order in their contributions to the scalar potential. This is very relevant for the
robustness of the large volume scenario [§] for which the leading o corrections were used
to obtain stabilised exponentially large volumes. Even though the leading string loop
correction to K is dominant over the o’ corrections, its contribution to the scalar potential
is subdominant [, fi]. We will also see that this cancellation is necessary if the loop
corrections to K are to generate corrections to the scalar potential consistent with those



expected from the Coleman-Weinberg potential. We also extend this result to more general
possible corrections to K, showing that the only property needed for the cancellation is
that 0K is a homogeneous function of degree n = —2, which includes the BHP proposal.
We illustrate our results with several examples.

This article is organized as follows. In section P we review the present status of the
tree-level and quantum corrected effective actions and their réle for moduli stabilisation.
Sections [| and ] are the main parts of the article in which we study in detail the proposed
form of the string loop corrections to the Kéahler potential, their interpretation in terms
of the Coleman-Weinberg potential and examples of different Calabi-Yau manifolds where
these corrections are relevant. Finally in a comprehensive appendix [ we provide a general
discussion of the different proposals that have been put forward to stabilise Kéahler moduli,
emphasizing that in all cases it is necessary to understand the quantum corrections to K.
This is an explicit illustration of the importance to better understand the perturbative
corrections to the supersymmetric action. In particular the ‘extended no-scale structure’
of section { is crucial to establish the robustness of the exponentially large volume scenario.
In a companion article [ we will use our results to study moduli stabilisation in different
classes of Calabi-Yau manifolds.

2. Effective action for type IIB flux compactifications

2.1 Tree-level action

We first review the low energy theory of IIB Flux Compactifications on a Calabi-Yau
X [Ld]. The tree-level superpotential is generated by turning on fluxes and takes the
Gukov-Vafa-Witten form:

Wiseo (S, U) = / Gy A Q. (2.1)
X

with G3 = F3 + iSHgs, where ' and H are RR and NSNS 3-form fluxes respectively, S is
the axio-dilaton S = e™% +iCy, (with e¥ the string coupling and Cj the RR 0-form), and
2 is the holomorphic (3,0)-form which depends on the complex structure moduli U. The

tree level Kahler potential K ee is

Kiree = —2In (V) —In (S 4 S5) — In —z’/Q/\Q , (2.2)

X

where V is the Einstein frame internal volume that depends only on (7" + T). Kiree has a
factorized form with respect to 7', U and S moduli. The T moduli are defined by

T; = 1; + 1b;, (2.3)

where 7; is the Einstein frame volume of a 4-cycle 3;, measured in units of Iy = (2m)Va/,

and b; is the component of the RR 4-form Cj along this cycle: [ Cy = b;. The 4-cycle
3

volumes 7; may be related to the 2-cycle volumes ¢;. Letting D; be a basis of divisors on



X (we use D; to denote both the divisor and its dual 2-form), and k;;;, the divisor triple
intersections, the overall volume V' can be written as

1 1
V=g /J ANINT = Ekijktltjtk, (2.4)
X

where J = t'D; is the Kéhler form. The 4-cycle volumes 7; are defined as

v 1 1
= 8—5 =5 /DZ- ANINJT = §kijkt]tk. (2.5)
X

Ti

Finally, let us introduce the following notation

({“)T,‘ k
Aij:%:/Di/\Dj/\J:kijkt. (2.6)
X

Some useful relations that we will use subsequently are

tiT; = 3V,
Aijtj = 27’2‘, (27)
Ajtith = 6V,
along with
9 (Ko) li
p=po- g, 23

where Ky = —21In (V). In addition, the general form of the Kédhler matrix is

9* (Ko)  1tit; AY

KO = = — - 2.9
4 0707 2 V2 Vv’ (2.9)
and its inverse looks like
G (0% (Ko)\
Ky = ( 0T, > =7;1; — VAij. (2.10)

For later convenience, we have expressed the derivatives of the Kahler potential in terms
of derivatives with respect to 7 = Re(T") rather than derivatives with respect to 7' (this
accounts for some differences in factors of 2 in certain equations compared to the literature).
From the previous relations it is also possible to show that

KIKO = —1;, (2.11)
and the more important result
K{ KK} =3. (2.12)

The N =1 F-term supergravity scalar potential is given by:

V=eK {KSSDSWDSW + KYUDyW Dy W + 4K D;WD,W — 3 \W]Q} . (213)



where

DW—%ZV sWEE =W, + JK,W,

SWIE =W, + JK;W. 214)

DjW - BTJ
The form of the scalar potential given in (R.13) has used the factorization of the moduli
space: in general this will be lifted by quantum corrections. As Wi,ee is independent of the

Kahler moduli, this reduces to
V=eK {KSSDSWDSW + KYUDyWDyW + (KK K; — 3) ywa} . (2.15)

Furthermore, (R.12) implies the existence of no scale structure as the last term of (R.13)
vanishes:

V =X { K DsWDsW + KU DyWDyW} > 0. (2.16)

As the scalar potential is positive semi-definite it is possible to fix the dilaton and the
complex structure moduli by demanding DgW = 0 = DyW. Usually, these fields are
integrated out setting them equal to their vacuum expectation values but sometimes we will
keep their dependence manifest. However since they are stabilised at tree level, even though
they will couple to quantum corrections, these will only lead to subleading corrections to
their VEVs, so it is safe just to integrate them out. From now on, we will set

Wy = </G3 VAN Q> . (2.17)

2.2 Non-perturbative and o' corrections

As seen in the previous paragraph, at tree level we can stabilise only the dilaton and the
complex structure moduli but not the Kéhler moduli. The only possibility to get mass for
these scalar fields is thus through quantum corrections.

It is known that in N=1 /D SUGRA, the Kéahler potential receives corrections at
every order in perturbations theory, while the superpotential receives non-perturbative
corrections only, due to the non-renormalisation theorem. The corrections will therefore
take the general form:

{ K = Ko + Kp + Kpp, (218)
W = Wtree + Wnp7

and the hope is to stabilise the Kahler moduli through these quantum corrections. In this
section we will review the behaviour of the non-perturbative and o’ corrections and then
study the g5 corrections in the main part of our paper.

Non-perturbative corrections to the superpotential are given by an infinite series of
contributions

Wip =D Aim(S,U) e 4T (2.19)

They can arise from either Euclidean D3-brane instantons (a; = 27) or gaugino condensa-
tion on wrapped D7-branes (a; = 27r/N, with N the rank of the condensing gauge group).
In general, A;,, depend on both dilaton and complex structure moduli. We will always



work in a regime where a;7; > 1 Vi = 1,...,hq1 so that we can ignore higher instanton
corrections and keep just the leading non-perturbative corrections:

Wap = > Ay(S,U)e 4T, (2.20)

K, can come from either worldsheet or brane instantons and is subdominant compared
to the perturbative corrections to the Kihler potential (see for instance [[L1], [J]) which in
general come from both the o/ and the g, expansion

Kp = 0K ) + 0K (g,). (2.21)

The leading o' correction to the Kihler potential comes from the ten dimensional O(a/?)
R* term. It has been computed in [ and reads

3/2
= —2In(V) - % +0 (1)V?), (2.22)
where the constant £ is given by
_ x(X)¢B3)

with x(X) =2 (h"! — h?!) and ¢(3) = 352, 1/k% ~ 1.2. We stress the point that the o
expansion is an expansion in inverse volume and thus can be controlled only at large volume.
This is important, as very little is known about higher o/ corrections, the exact form of
which are not known even in the maximally supersymmetric flat 10D IIB theory. From
now on we focus only on situations in which the volume can be stabilised at V > 1 in order
to have theoretical control over the perturbative expansion in the low-energy effective field
theory. The inclusion of (R.20) and (R.23) now gives the following scalar potential (where
the dilaton has been fixed and the factor Re (S )3/ % included in the definition of ¢)

V - Vnp —|— Vv(a/)

K| KTk <ajAjakflke_(afo+a’“T’“) — (ajAjefajTj WK, + akAkefa’“T’“WKj))

+3¢

(€24 76V +12) |W|2] (2.24)

V=062V +¢)>

3. General analysis of the string loop corrections

3.1 String loop corrections

Our discussion of the form of the scalar potential in IIB flux compactifications has still to
include the string loop corrections 0Ky, ). These have been computed in full detail only for
unfluxed toroidal orientifolds in [ff]. Subsequently the same collaboration in [ff] made an



educated guess for the behaviour of these loop corrections for general smooth Calabi-Yau
three-folds by trying to understand how the toroidal calculation would generalize to the
Calabi-Yau case. To be self-contained, we therefore briefly review the main aspects of the

toroidal orientifold calculation of [f].

3.1.1 Exact calculation: N=2 K3 x T? and N=1 T%/(Zy x Z3)

The string loop corrections to N=1 supersymmetric 7°/(Zy x Zs) orientifold compactifi-
cations with D3 and D7 branes follow by generalising the result for N=2 supersymmetric
K3 x T? orientifolds. Therefore we start by outlining the result in the second case.

The one-loop corrections to the Kahler potential from Klein bottle, annulus and Mobius
strip diagrams are derived by integrating the one-loop correction to the tree level Kahler

gs)
it is sufficient to compute just one of these correlators and integrate, since all corrections

metric. These corrections are given by 2-point functions and to derive the corrections d K

to the Kahler metric come from the same §K 4 ). From [ the one-loop correction to the
2-point function of the complex structure modulus U of T2 is given by, dropping numerical

factors,

T2
LollT)s ,)82 &(A;,U), (3.1)
(U+70)

where V} is the regulated volume of the 4D spacetime, vol(T?)s denotes the volume of

(VuVi) ~ = (p1 - p2) g2’ 4V

T? in string frame and A; are open string moduli. The coefficient £ (A;,U) is a linear
combination of non-holomorphic Eisenstein series F2(A,U) given by

Ey(AU) = %)24 exp 271'2'A(n +mU) + {1(” +mU) (3.2)
(nam2(00) MU v+v
The result (B.1)) is converted to Einstein frame through a Weyl rescaling
e2®
VuVg)p = VuVg), wol(K3 x T2), (3.3)
giving
(VuVi) ~ = (p1 - p2) g20' V) e &) (3.4)

(U + U)2 vol(K3)s
Writing the volume of the K3 hypersurface in Einstein frame vol(K3)s = e?vol(K3)g,

produces the final result

e’ 52 (AZ’ U)

Vi Vi) ~ — (py - 20/~ . 3.5
VoVg) ~ = (p1-p2) goc U+ 0) vol(K3)e (8:5)
Now noticing that
Fy(A
OOy Ea(A,U) ~ —2(7(])2 (3.6)
(U+0)

we can read off from (B.J) the 1-loop correction to the kinetic term for the field U and
using vol(K3)g = 7, the 1-loop correction to the Kéahler potential becomes

E (AU
g9s) = CPQ{iTS)T)7 (3.7)



where a full analysis determines the constant of proportionality ¢ to be ¢ = —1/(1287%).1
This procedure can be generalized to evaluate the loop corrections in the N=1 supersym-
metric T6/(Zy x Z3) case, obtaining

KK W
5K(gs) == 5K(gs) + 5K(gs)7 (38)

where J K, (I; SI)( comes from the exchange between D7 and D3-branes of closed strings which
carry Kaluza-Klein momentum, and gives (for vanishing open string scalars)

1 < EXK(U, D)

SKEE — _ .
(95) 12874 £~ Re(S) 7

(3.9)

The other correction § K (12/3 ) can again be interpreted in the closed string channel as coming
from the exchange of winding strings between intersecting stacks of D7-branes. These
contributions are present in the N=1 case but not in the N=2 case. They take the form

3 —
1 EV(U,0)
SKYV = ——— g 4 (3.10)
(Qs) 4 .
1287 il TiTk

3.1.2 Generalisation to Calabi-Yau three-folds

The previous calculation teaches us that, regardless of the particular background under
consideration, a Weyl rescaling will always be necessary to convert to four-dimensional
Einstein frame. This implies the 2-point function should always be suppressed by the
overall volume:

<VUVU>3 ~g(UT,S) (VUVU> ~g(U,T,S)— (3.11)
This allowed [ff] to conjecture the parametric form of the loop corrections even for Calabi-

Yau cases. g(U,T,S) originates from KK modes as m;fK and so should scale as a 2-cycle
volume ¢. Conversion to Einstein frame then leads to

hi,1 I hi1 HKK
ait') e? C; (U,0) (agt
SKER ~ g(U)( lv) =y~ Re(S)V (au ), (3.12)

=1 =1

where a;t! is a linear combination of the basis 2-cycle volumes ¢;. A similar line of argument

for the winding corrections (where the function g(U, T, S) goes as m;VQ ~ t~1) gives

h1

Z @ ltl : (3.13)

=1

Notice that CX¥ and C!V are unknown functions of the complex structure moduli
and therefore this mechanism is only useful to fix the leading order dependence on Kéhler

!The constant ¢ given here differs from the one calculated in [ﬂ] only by a factor of (—7?) due to different

conventions. In fact, in [E] the correction (@) takes the form 6K, ) = —%% with Im(S) = i/%:
and Im(T') = .




moduli. This is similar to the Kahler potential for matter fields whose dependence on
Kihler moduli can be extracted by scaling arguments [[L3], while the complex structure
dependence is unknown. Fortunately it is the Kéhler moduli dependence that is more
relevant in both cases due to the fact that complex structure moduli are naturally fixed by
fluxes at tree-level. On the other hand, the Kéhler moduli need quantum corrections to be
stabilised and are usually more relevant for supersymmetry breaking.

We now turn to trying to understand the loop corrections from a low-energy point of
view.

3.2 Low energy approach

The low energy physics is described by a four dimensional supergravity action. We ask
here whether it is possible to understand the form of the loop corrections in terms of the
properties of the low energy theory, without relying on a full string theory computation.

We first ask what one could reasonably hope to understand. The form of equations (B.9)
and (B.10]) show a very complicated dependence on the complex structure moduli, and a
very simple dependence on the dilaton and Kéahler moduli. The dependence on the complex
structure moduli is associated with an Eisenstein series originating from the structure of
the torus, and so we cannot expect to reproduce this without a full string computation. On
the other hand the dilaton and Kéahler moduli appear with a very simple scaling behaviour.
This we may hope to be able to understand using low-energy arguments, and to be able to
conjecture the generalisation to the Calabi-Yau case.

There is one paper in the literature that has already tried to do that. In an interesting
article [[l4], von Gersdorff and Hebecker considered models with one Kihler modulus 7,
such that V = 73/2 = RS «= 7 = R*, and argued for the form of 5K(I;SI)( using the Peccei-
Quinn symmetry, scaling arguments and the assumption that the loop corrections arise
simply from the propagation of 10D free fields in the compact space and therefore do not
depend on M. This led to the proposal

SK{N =772 (3.14)

However, at the level of the Kéhler potential (but not the scalar potential) this result
disagrees with the outcome of the exact toroidal calculation (B.9). It seems on the contrary
to reproduce the corrections due to the exchange of winding strings (B.10), but as my >
My > mgg we do not expect to see such corrections at low energy. In reality, J§K (I; SI)(
should contain all contributions to the 1-loop corrections to the kinetic term of 7. From
the reduction of the DBI action we know that 7 couples to the field theory on the stack
of D7-branes wrapping the 4-cycle whose volume is given by 7. It therefore does not seem
that the string loop corrections will come from the propagation of free fields as 7 will
interact with the corresponding gauge theory on the brane. In fact the reduced DBI action

contains a term which looks like

55]3]3[ D) /d4.%'\/ —g(4)TF“”FW, (3.15)

and when 7 gets a non-vanishing VEV, expanding around this VEV in the following way

r=(1)+17, (3.16)



1/<t>

Figure 1: Coupling of the Kahler modulus with the gauge fields on the brane.

we obtain
6SpBr D / d*z\/—g¥ ((r) F*F,, + 7' F*"F,,). (3.17)

From the first term in (B.17) we can readily read off the coupling constant of the gauge

group on the brane
1
2

_ 3.18
9 = (3.18)

where we have added M7 to render it correctly dimensionless. On the other hand, the
second term in (B.I7) will give rise to an interaction vertex of the type shown in figure 1
that will affect the 1-loop renormalisation of the 7 kinetic term.

In any ordinary quantum field theory, generic scalar fields ¢ get 1-loop quantum cor-
rections to their kinetic terms (wavefunction renormalisation) of the form

/d4x\/ —g(4)% (1+ A)0,p0*e, (3.19)

where A is given by A ~ %, with g the coupling constant of the gauge interaction this
scalar couples to.

7 is a modulus and not a gauge-charged field. Nonetheless, we still expect loop correc-
tions to generate corrections to the moduli kinetic terms. We expect to be able to write
the kinetic terms as

Kij = K tree + K351 100p° (3.20)

We also expect the loop correction to the kinetic term to always involve a suppression
by the coupling that controls the loop expansion. This is the analogue to the correction
in (B.19) depending on the gauge coupling constant, which controls the loop expansion of
ordinary field theory. For a brane wrapping a cycle 7, the value of 7 is the gauge coupling
for branes wrapping the cycle, and we expect loop corrections involving those branes to
involve a suppression, relative to tree-level terms, by a factor of 7 (see [LY] for related
arguments).

This is not a rigorous derivation, but we consider this a reasonable assumption. We will
find that it gives the correct scaling of the loop correction for the toroidal case where the

,10,



correction has been computed explicitly, and that, while it has a different origin, it agrees
with the BHP conjecture for the parametric form of loop corrections in the Calabi-Yau
case. The loop corrections to the Kéhler potential K should then be such as to generate
corrections to the kinetic terms for 7 that are suppressed by a factor of g2 for the gauge
theory on branes wrapping the cycle 7. The Kéhler potential upon double differentiation
yields the kinetic terms in the /D Einstein frame Lagrangian

8?2 (5Kg;f§)

/ 0* Kiree
SEinstem D /d4.%' _9(4) (87'; ) + 92 (87’)2, (321)

and the general canonical redefinition of the scalar fields

T— @ =(T), (3.22)

will produce a result similar to (B.19), which implies

P (K) 1 P(EEN) P 5.23)
Z ) — —_—m % —_ ~ — .
or? 2’ or? 2 21672’
and thus
9% (KKK 2 2
( (Qs) > g a (Ktree) ) (324)

oT2 T 1672 or2
Using equation (B.1§) we then guess for the scaling behavior of the string loop corrections
to the Kéhler potential

2 KK
0 (OKEE)  f(Re(S) 10° (Kivee)
or? 16702 1+ 012

where we have introduced an unknown function of the dilaton f(Re(S)) representing an

(3.25)

integration constant.? However we may be able to use similar reasoning to determine

f(Re(S)). The same correction dK (Ig(f)( , upon double differentiation with respect to the

dilaton, has to give rise to the 1-loop quantum correction to the corresponding dilaton
kinetic term. We also recall that .S couples to all field theories on D3-branes as the relative

gauge kinetic function is the dilaton itself. Using the same argument as above we end up

with the further guess for § K g SI)( :

2 KK
o (3K5) () 1 P (Kue) _ h(r) 1 3.26)
ORe(S)? 1672 Re(S) ORe(S)2 ~ 1672 Re(S5)3’ '

where h(7) is again an unknown function which parameterises the dependence on the
Kihler modulus. Integrating (B.26) twice, we obtain
h 1

Ki  h) (3.27)

(95) " 1672 Re(S)’

2In general there should be also an unknown function of the complex structure and open string moduli
but we dropped it since, as we stated at the beginning of this section, its full determination would require
an exact string calculation.

— 11 —



where h(7) can be worked out from (B.25)

62 (h(T)) 1 82 (Ktree)
or? T orz

(3.28)

We now apply the above methods to several Calabi-Yau cases, comparing to either the
exact results or the conjecture of equation (B.12)

3.2.1 Case 1: N=1 T5/(Zy x Zs)

We first consider the case of toroidal compactifications, for which the loop corrections have
been explicitly computed [[]. In that case the volume can be expressed as (ignoring the 48
twisted Kéhler moduli obtained by blowing up orbifold singularities)

Y = s, (3.29)
and so (B.2§) takes the form

2 KK
0 (OKEN)  pre(s)
o2 1672

)

Vi=1,2,3. (3.30)

-

Upon integration we get

gkr 1 f(Re(S))
(9s) " 1672 7

Vi=1,2,3. (3.31)

Now combining this result with the analysis for the dilatonic dependence of the string loop
corrections, we obtain

3
1 1
(SKKK ~
9s) "7 1672 ZZ; Re(S)7;’

(3.32)

which reproduces the scaling behaviour of the result (B.9) found from string scattering
amplitudes.

. 4
3.2.2 Case 2: CP[1,1,1,6,9}
We next consider loop corrections to the Kahler potential for the Calabi-Yau orientifold
CPﬁ,Ll,b’B]' We will compare the form of (.12) (see also ([A.29)) to that arising from our
method (B.28) to work out the behaviour of 6 K ([; SI)( , finding again a matching.? In the large

volume limit we can write the volume as follows

1 3/2 3/2 3/2
V:WE<T5/ —7'4/ > :7'5/, (3.33)

and (B.19) becomes

@) " Re(S)Y ' Re(S)V  Re(S)V ' Re(S)7s ‘

3We note that the topology of (CPﬁ’M’&g] does not allow to have 5K(V;/S) #0 [@]
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From the tree-level Kahler matrix we read

32 (Ktree) ~ 1 82 (Ktree) ~ i (3 35)
ory  JmV’ orz2 1% '

Requiring loop corrections to be suppressed by a factor of g2 for the field-theory on the
brane gives

PORES) 4 1
or? 1672 Re(9) LY (3.36)
o2 (5K(I§sK)) 1 11

o7 7 167 Re(s) 73

which, upon double integration, matches exactly the scaling behaviour of the result (B.34).

3.2.3 Case 3: CP | ,,
As another example we study the expected form of loop corrections for the case of the
Calabi-Yau manifold Cpﬁ,1,2,2,6}’ defined by the degree 12 hypersurface embedding. This
Calabi-Yau is a K3 fibration and has (h!'}, h?1) = (2,128) with x = —252. Including only

the complex structure deformations that survive the mirror map, the defining equation is
212 4 232 4 28 4 28 4 22 — 12021 20232425 — 202828 = 0. (3.37)

In terms of 2-cycle volumes the overall volume takes the form

2
V=tita+ 57&3, (3.38)
giving relations between the 2- and 4-cycle volumes,
T =13, T = 2ty (t1 +t2),
T — 2’7’1

ty = /71, t1 = 27\/ﬁ7 (3.39)

allowing us to write

y— %\/?1 (72 _ §ﬁ> . (3.40)

Let us now investigate what the arguments above suggest for the form of the string
loop corrections for the Cpﬁ71,272,6] model should look like. Applying (B.13) and (B.13) for
the one-loop correction to K, we find

SKEE o C{(K Ty — 27 C2KK\/H
@) " Re(S)V 27 Re(S)V’

(3.41)

along with
cwWo2./m cw
KV, ~ I z_. 42
0 (9s) V 179 —271 +V1/T1 (3 )

The arguments summarized in the relation (B.2§) reproduce exactly the behaviour of these

corrections. The tree-level Kahler metric reads

82 (Ktree) o 1 27 62 (Ktree) o 1m

= 4+ 2= - = 3.43
67’12 7'12 9gy2’ 87’22 2Y2 ( )
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Given that we are interested simply in the scaling behaviour of these corrections, we notice
that either in the case 7 < 79 such that

1

2
V:§\/7-—1<7'2—§7'1> 275/2:7'5'/2, (3.44)

or in the large volume limit 7 <« 7 where

Y ~ \/771T2, (3.45)
the matrix elements (B.43) take the form

0? (Kiee) 1 0% (Kyee) 1 (3.46)
or? T2’ or2 ch '
We can now see that our method (B.2§) yields
” <5K(I§5> 1 1 9 (Kiree) KK 1
or? ™~ T6n2 Re(s)r, o7 A 5[((93,7'1) ~ Re(s)r (347)
” <6K(I§5 ) 1 1 9 (Kuree) KK 1

— 5[((9877'2) ~ Re(S)TQ

or3 ™~ T6n2 Res)r, 073

which, both in the case 71 < 75 and 71 < 72, matches the scaling behaviour of (B.41)

KK _ KK KK KK
S R S Sl R VAT Gl S V)
9s Re(S)V 27 Re(S)V Re(S)m  Re(S)n

4. Extended no scale structure

The examples in the previous section give support to the notion that loop corrections to
the Kéahler potential can be understood by requiring that the loop-corrected kinetic terms
for a modulus 7 are suppressed by a factor of ¢ for the gauge group on branes wrapping
the 7 cycle. We repeat again that these arguments only apply to moduli that control loop
factors.

While not proven, we now assume the validity of this parametric form of the corrections
and move on to study the effect of such corrections in the scalar potential. We shall
show that the leading contribution to the scalar potential is null, due to a cancellation
in the expression for the scalar potential. We shall see that this cancellation holds so
long as §K (Ig( 5 is an homogeneous function of degree n = —2 in the 2-cycle volumes. We
call this “extended no scale structure”, as the cancellation in the scalar potential that is
characteristic of no-scale models extends to one further order, so that compared to a naive
expectation the scalar potential is only non-vanishing at sub-sub-leading order. Let us
state clearly the “extended no-scale structure” result:

Let X be a Calabi- Yau three-fold and consider type IIB N =1 4D SUGRA
where the Kdhler potential and the superpotential in the Finstein frame take the
form:

{K :Ktree+5K, (41)

W = W.
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If and only if the loop correction 6K to K is a homogeneous function in the

2-cycles volumes of degree n = —2, then at leading order

Vg = 0. (4.2)

Js

We shall provide now a rigorous proof of the previous claim. We are interested only in the
perturbative part of the scalar potential. We therefore focus on

W
V2

Vige) = (K70, KO, K — 3) (4.3)
where K = —21n (V) +0K,4,). We focus on 6 K coming from g (rather than o) corrections.
We require the inverse of the quantum corrected Kahler matrix, which can be found using
the Neumann series. Introducing an expansion parameter ¢, and writing Kiyee as Kg, we

define
25 9% (6K
/coz{a 0} P e LYR) (4.4)
0707} ig=1, 11 07,07} =1 iin
and have
K'Y = (Ko +£6K)" = (Ko (1 + 6Ky '0K))" = (1 + ey 'oK) " K. (4.5)

Now use the Neumann series

(1 4Ky '6K)" = 6 — e K6 Ky + 2K 6 Kp KPS Ky + O(%), (4.6)
to find
K9 = K — e K"K, K§ + 2 K0 Ky KL K g K§ + O(€3). (4.7)

Substituting ({.7) back in ({.J), we obtain

Vg = Vo + £8Vi + €%6Vs + O(e%), (4.8)

.. 2
where V) = (Ké]KiOKJO — 3> |VVVQ| = 0 due to (R.19) is the usual no-scale structure and

Vi = (2K KP0K; — K sk, K KOKY) I
Vo = (KISK 0K — 2K K, K K90K; (4.9)

. 1510 -0\ W/
ROy K0 K K KK ) L
We caution the reader that ([.§) is not a loop expansion of the scalar potential but rather
an expansion of the scalar potential arising from the 1-loop quantum corrected Kéhler
metric. The statement of extended no-scale structure is that §V; will vanish, while §V5 will
be non-vanishing. Recalling (P.11]), §V; simplifies to

(4.10)

5V = (27ja(5f() o2 (5K)> W2

0T + Tl 0701 y2
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Let us make a change of coordinates and work with the 2-cycle volumes instead of the
4-cycles. Using the second of the relations (.7), we deduce

0 P
27— =t — 4.11
o1 b (4.11)

and
LA SR A W o(4%) 0
TSm0 A a0ty AT o ot

From the definition (R.9) of A;;, we notice that A;; is an homogeneous function of degree

(4.12)

n = 1 VI,i. Inverting the matrix, we still get homogeneous matrix elements but now of

degree n = —1. Finally the Euler theorem for homogeneous functions, tells us that
o (AP
te (4?) _ (—1) AP, (4.13)
Oty

which gives

9?2 1 9?2 1 9

= it — —t,— 4.14
[ i KT T T (4.14)
and, in turn
1 /.. 0(0K) 9?2 (BK)\ W
Vi =—= (3t tit ) 4.1
Vi 4<3l on 1 onan ) V2 (4.15)

The form of equation (B.13) suggests that for arbitrary Calabi-Yaus the string loop correc-
tions to K will be homogeneous functions of the 2-cycle volumes, and in particular that
the leading correction will be of degree —2 in 2-cycle volumes. Therefore if the degree of
0K is n, the Euler theorem tells us that

w1 w1
oy =— 2 1 Bn+n(n—1))0K = — 2 Zn(n + 2)IK. (4.16)
It follows then, as we claimed above, that only n = —2 implies dV; = 0. In particular, from

the conjectures (B.13) and (B.13), we see that

{n = —2 for KKK

(gs)” 4.17
n=—4 for 6K(V;/s), ( )

and so KK
{ . Vo :SV’ e (4.18)
‘W(gs),l - _25K(gs) v

4.1 General formula for the effective scalar potential

Let us now work out the general formula for the effective scalar potential evaluating also
the first non-vanishing contribution of J K (Ig( 5 , that is the €2 terms ([.9) in V/
oV = (K§SKi0K; — 2K 0 K K KVOK;

. : W
+K3m5Kmngq5quKéﬂK?K;?> % (4.19)
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Using (R.11), 6V» simplifies to

i . W2
6V = (K§SKi0K; + 2mnd Kt K 01 + T o0 Koy K 0K ) Wi (4.20)

12
We now stick to the case where 5K(I§SI)( is given by the conjecture (B.12). Considering
just the contribution from one modulus (as the contributions from different terms are
independent), and dropping the dilatonic dependence, we have

KK CKKta
5K — 5K(gs)77—a ~ V . (421)
From ({.21) we notice that
0Ky, =A™ —~L = A™ (-2 Y 4.22
o~ Ca AT (4.22)
1t,t Aem
_ KK [ _Ltltalm A\ KK [0
_Ca < 2 V2 + V ) Ca Kam’
thus - -
K{0K; = —CENKY KD, = —CER6,. (4.23)
With this consideration ([..2()) becomes
KK KK Ip W
6V = (~CEROK, = 205K 10 Koma + T Ko K 0K ) S (4.24)
We need now to evaluate
1, 0 0 (0K) 1, 0
0Ky = —t,— [ AP0 ) = Z¢ ) — (6K)) = —20K], 4.2
TmORml = 5" o, ( ot > 2, 0K : (4.25)
that yields
z W
5V, = <_ch5Ka +ACKESK, + 46K1K0p6Kp> o (4.26)
KK KK KK W
= (—CER6K, +4C; " 0K, — AC M 0K,) 2 (4.27)
W
= —CEKSK, R (4.28)

With the help of the relation (4.29) and replacing the dilatonic dependence, we can write
the previous expression in terms of the tree-level Kéhler metric
(N

Vo = K? .
27 Re(5)2 w2

(4.29)

Putting together (f.1§) and ({.29), we can now write the quantum correction to the scalar
potential at leading order at 1 loop for general Calabi-Yaus, in terms of the cycles ¢ wrapped
by the branes and the quantum corrections to the Kahler potential,

KK\2 2
lloop __ (CZ ) 0 w WO
5V(gs) - Z < Re(S5)2 K — 25K(gs)m> V2 (4.30)

i
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We emphasise that this formula assumes the validity of the BHP conjecture, and only
focuses on corrections of this nature.

Finally we point out that, due to the extended no-scale structure, in the presence of
non-perturbative contributions to the superpotential, it is also important to check that the
leading quantum corrections to the general scalar potential (2.24) are indeed given by (£.3()
and the contribution to the non-perturbative part of the scalar potential generated by string
loop corrections

j Lid§
(gs)

S (4.31)

Vo = (2K WidK g, ;W + 0K Wil

is irrelevant. A quick calculation shows that this is indeed the case.?

4.2 Field theory interpretation

We now interpret the above arguments and in particular the existence of the extended no-
scale structure in light of the Coleman-Weinberg potential [[7].> We will see that this gives
a quantitative explanation for the cancellation that is present. The Coleman-Weinberg
potential is given in supergravity by (e.g. see [I9])

1 4 0 A? 2 2 4 M?
MNloop = s [A STr (M°)In (? +2A°STr (M?) + STr ( M*In el , (4.32)
where p is a scale parameter, A the cut-off scale and
STr(M™) =Y (=1)% (2 + 1) m}, (4.33)

7
is the supertrace, written in terms of the the spin of the different particles j; and the
field-dependent mass eigenvalues m;.

The form of (.39) gives a field theory interpretation to the scalar potential found in
section [L.J. Let us try and match the 1-loop expression with the potential (f.33) inter-
preting the various terms in the Coleman-Weinberg potential as different terms in the €
expansion in (fL.§). We first notice that in any spontaneously broken supergravity theory,
STr (M 0) = 0, as the number of bosonic and fermionic degrees of freedom must be equal.
The leading term in ({.32) is therefore null.

We recall that due to the extended no-scale structure the coefficient of the O(e) term
in (.§) is also vanishing. Our comparison should therefore involve the leading non-zero
terms in both cases. In the following paragraphs, we will re-analyse the three examples

studied in section |3 and show how we always get a matching. This gives a nice physical

VKK
(9s),1—loop

supersymmetry: the cancellation must take place if the resulting 1-loop potential is to

understanding of this cancellation at leading order in § which is due just to

4We shall not discuss the effects of higher loop contributions to the scalar potential. We expect that
these will be suppressed compared to the one-loop contribution by additional loop factors of (167%), and
so will not compete with the terms considered in (}.30).

5%r a previous attempt at matching string effective actions onto the Coleman-Weinberg potential,
see [|Lg).
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match onto the Coleman-Weinberg form. Supersymmetry causes the vanishing of the first
term in ({.32) and we notice, for each example, that the second term in (4.33) scales as
the O(e?) term in ([£), therefore, in order to match the two results, the O(e) term in ([£§)
also has to be zero. This is, in fact, what the extended no-scale structure guarantees.

We note here that both, with the use of the supergravity expression for the Coleman-
Weinberg formula, and for the earlier discussions of section 3, supersymmetry has played a
crucial role. In the Coleman-Weinberg formula, the presence of low-energy supersymmetry
is used to evaluate the supertraces and to relate these to the gravitino mass. In the
discussion of kinetic terms, the fact that the corrections are written as corrections to the
Kahler metric automatically implies that the structure of low-energy supersymmetry is
respected.

4.2.1 Case 1: N=1 T/(Zs x Z>)

The case of the N=1 toroidal orientifold background was studied in section and B.2.1.
We here treat all three moduli on equal footing, reducing the volume form (B.29) to the
one-modulus case

=\ 3/2
V=r32= (#) . (4.34)

We therefore take
(T1) = (12) = (73). (4.35)

We write out very explicitly the correction to the scalar potential due to the correction to
the Kéhler potential as computed in [f]. We focus only on the Kihler moduli dependence.
The tree level Kahler potential is

K=-3In(T+T7)
and the loop-corrected Kéhler potential has the form

K= —31n(T+T)+m.

The scalar potential is
V = Mbe <Ki38iK85K ~ 3) W2,

Evaluated, this gives

M4 2
v _Mp 0+OXO(_€)+ (’)(e_)

(T+T)3 T+T  (T+T)?
Mbe ML

(T+T)> ~ V1o/s-

(4.36)

The cancellation of the O(T +T)~3 term in ([.36) is due to the original no-scale structure.
The cancellation of the O(T +T)~* term in ([.36) is due to the extended no-scale structure
that is satisfied by the loop corrected Kahler potential, giving a leading contribution at
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O(T + T)~>. This gives the behaviour of the leading contribution to the scalar potential,
which we want to compare with the Coleman-Weinberg expression.
To compare with ([.33) we recall that in supergravity the supertrace is proportional

to the gravitino mass:
STr (M?) = m3 5. (4.37)

The dependence of the gravitino mass on the volume is always given by
1
mg/Q:eKWQ:— = STr (M?) ~ —. (4.38)

We must also understand the scaling behaviour of the cut-off A. A should be identified
with the energy scale above which the four-dimensional effective field theory breaks down.
This is the compactification scale at which many new KK states appear, and so is given by

M, M, 1 1 Mp
In units of the Planck mass, ({.39) therefore scales as
Vitoop = 0+ A* + A2STr (M?) + STr (| M*In MEVY
lloop — A2 —
1 1 1 44
T V8/3 T Y10/3 + e’ (4.40)

~

in agreement with (§.34).

. 4
4.2.2 Case 2: CP[1,171,679}

This case, studied in section B.2.9, is more involved, as it includes two Kéhler moduli, the
large modulus 7, ~ V?/3 and the small modulus 7,. The effective potential gets contribu-
tions from loop corrections for both moduli and in these two cases, ({.J) takes the form
(the dilaton is considered fixed and its dependence is reabsorbed in CX % and CEX)

1. Big modulus

2 3
T N T < T o M LN
(g5),1~loop T Tb2 Tg’ 87’51 Z
CER ap (CF5)" | ags (€)Y
~ <0. YT + D103 + i Wg. (4.41)
2. Small modulus
CKE)?  qy, (CKK)? 0K

SV KK (. pEENTs az,s (C; s \bs -2 0 2
‘/(95)71_10013 <0 Cs V3 + V3./7s + V37'33/2 +OV ord Wo
(4.42)
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Figure 2: Coupling of the big modulus KK modes to a generic field @, living on the brane wrapping
the small 4-cycle.

\
TS \

Figure 3: Coupling of the small modulus KK modes to a generic field ®; living on the brane
wrapping the small 4-cycle.

In the Coleman-Weinberg potential, the supertrace has the same scaling ~ V=2 as
in ([.39), but there now exist different values of the cut-off A for the field theories living
on branes wrapping the big and small 4-cycles

Ay =m ~-L L= Mp
b KK)b 7_;/4 v P V2/3°

ﬂ

(4.43)

As=m ~ L L Mp.
s KK,s 7_51/4\/]—) P

The existence of two cut-off scales requires some explanation. At first glance, as Ay < Ag
and the KK modes of the big Kahler modulus couple to the field theory on the brane
wrapping the small 4-cycle, one might think that there is just one value of the cut-off A,
which is given by Ay, = mgg . This corresponds to the mass scale of the lowest Kaluza-
Klein mode present in the theory. For a field theory living on a brane wrapping the large
cycle, this represent the mass scale of Kaluza-Klein replicas of the gauge bosons and matter
fields of the theory. However, we do not think this is the correct interpretation for a field
theory living on the small cycle. The bulk Kaluza-Klein modes are indeed lighter than
those associated with the small cycle itself.

However it is also the case that the bulk modes couple extremely weakly to this field
theory compared to the local modes. The bulk modes only couple gravitationally to this
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field theory, whereas the local modes couple at the string scale RI]. In the case that the
volume is extremely large, this difference is significant. For a field theory on the small
cycle, the cutoff should be the scale at which KK replicas of the quarks and gluons appear,
rather than the scale at which new very weakly coupled bulk modes are present. As the
local modes are far more strongly coupled, it is these modes that determine the scale of
the UV cutoff. This is illustrated in figure 2 and 3.9

We now move on to make the matching of ({.41]) and (f.49) with the Coleman-Weinberg
potential ([.39). For the big modulus, we find

M2
5V1l00p ~0- Ag + AgST'F (Mz) + STr <M4 In (F))
b

1 1 1
B EREVUEREVE
which yields again a scaling matching that of () For the small modulus we obtain,
proceeding as in the previous case

~ 0 (4.44)

M2
5V1l00p ~0- Aﬁ +A§ST'F (Mz) + STr <M4 In <F>>
11
ER V2R VE B VE N

where we have a matching only of the second term of (f.45) with the second term of (f43).
This is indeed the term which we expect to match, given that is the first non-vanishing

~0- (4.45)

leading contribution to the effective scalar potential at 1-loop. There is no reason the first
terms need to match as they have vanishing coefficients.

As an aside, we finally note that the third term in (f.43) can also match with the
Coleman-Weinberg effective potential, although we should not try to match this with the
third term in ([:33) but with a subleading term in the expansion of the second term
in (.39). This is due to the fact that we do not have full control on the expression for the
Kaluza-Klein scale (f.43). In the presence of fluxes, this is more reasonably given by (for
example see the discussion in appendix D of [f])

1 Mp ( 1 > 1 Mp 1 Mp

s KK,s T31/4\/1_) Ts T31/4\/]_) T§/4\/]_)
1 M3 2 M}

2 ~o— = _
= A ~ Ry TRy (4.46)

This, in turn, produces
1 2 1

P _|_ _

3 3
V3o B2y
In this case the second term in ([E47) reproduces the scaling behaviour of the third term
in (4.42).

Notice that the cut-off dependence of the STr(M?) term could potentially be dangerous for the stability
of the magnitude of soft terms computed for this model in references @] With our analysis here it is easy

1
AZSTr (M?) ~ o (4.47)

to see that the contribution of this term to the scalar potential and then to the structure of soft breaking
terms is suppressed by inverse powers of the volume and is therefore harmless.
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. 4
4.2.3 Case 3: (CP[LLQ,Q,G}

In section we have seen that there are two regimes where the case of the K38 Fibration
with two Kahler moduli can be studied. When the VEVs of the two moduli are of the same
order of magnitude, they can be treated on equal footing and the volume form which, as we
have just seen in section [.2.1], gives also the scaling behaviour of the toroidal orientifold
case. We do not need therefore to repeat the same analysis and we automatically know
that the scaling of our general result for the effective scalar potential at 1-loop matches
exactly the Coleman-Weinberg formula also in this case.

The second situation when 75 > 71 is more interesting. The relations (B.39) tell us
that the large volume limit 79 > 77 is equivalent to ¢1 > to and thus they reduce to

1
T = t%, Ty X~ 2t2t1, VY ~ 5\/5’7'2 ~ tlt%. (448)

The KK scale of the compactification is then set by the large 2-cycle ¢4,
My  Mp

MK ~ —— ~ ——, 4.49
Vi1 t1to ( )
while in the large volume limit the gravitino mass is
Mp  Mp
~ ~ 4.50
TRy R (4.50)

The bulk KK scale is therefore comparable to that of the gravitino mass, and it is not clear
that this limit can be described in the language of four-dimensional supergravity. Let us
nonetheless explore the consequences of using the same analysis as in the previous sections.
The evaluation of ([£§) gives (reabsorbing the VEV of the dilaton in CXX and CIK)

1. Small modulus 7

2 3
Vigontioop ™ (0- CLY | oan (CFF) | oan (CFF) )WOQ. (4.51)

gs),1loop — V2 TlZVQ 7.%1;2

2. Big modulus m

3/2
1 2 T1 3T

5V(§§1loop = <0 : Cé(K\{)—; +ag (C3F) y1 T as2 (35 %) W5, (4.52)
Let us now derive the two different values of the cut-off A for the field theories living on
branes wrapping the big and small 4-cycles. We realise that the Kaluza-Klein radii for the
two field theories on 7 and 75 are given by

By = via, (4.53)
R2 ~ \/tl,
and consequently
_ ~ M 1
A = mig1 > Vi = 7_11/4—WMP, (4.54)

Ms ~, V71
A2 = MKK2 = \/H_gMP



We note that mgx 2 coincides with the scale of the lightest KK modes mgx. If we try
to match the result (f.51) for the small cycle with the corresponding Coleman-Weinberg
potential for the field theory on 7

2
Vitoop = 0+ AT + ATSTr (M?) + STr <M4 In (Ajé ))

0 ! + ! + = (4.55)
I VD B Ve '
we do not find any agreement. This is not surprising since effective field theory arguments
only make sense when

6‘/(2(351l00p < m%(K’ (456)

but this condition is not satisfied in our case. In fact, using the mass of the lowest KK
mode present in the theory, we have

2
4 4 1 1 KK

mKK = mKK,2 ~ V4 << V2 ~ 6‘/(93)711001). (457)
Energy densities couple universally through gravity, and so this implies an excitation of
Kaluza-Klein modes, taking us beyond the regime of validity of effective field theory. Thus
in this limit the use of the four-dimensional supergravity action with loop corrections to
compute the effective potential does not seem trustworthy, as it gives an energy density
much larger than m‘}( K-

For the field theory on the large cycle 75 the Coleman-Weinberg potential gives

2
Vitoop = 0+ A3 + A3STr (M?) + STr <M4 In (Ajé ))

Ty, L (4.58)
In this case the energy density given by the loop corrections ([.53) is (marginally) less

than m3. ;- ~ 72V, being smaller by a factor of 7. Equation (fE5§) then matches the

result ({.53) at leading order.
Again, we also note as an aside that if we expand the KK scale as in in section [£.2.9,
then we obtain

NG 1 VT1Ioom
Ay = ~Y—(1+—+4+...|Mp=|“—+—=|M
2 = MKK? v + . + P v + V2 P
T 732
— A= (W T ﬁ) M2, (4.59)
This, in turn, produces
st Tf/Q
2 2
A3STr (M?) ~ YRR (4.60)

In this case the second term in (J£60) also reproduces the scaling behaviour of the third
term in ({.52)).

— 24 —



5. Conclusions

The purpose of this article has been to study, as far as possible, the form of loop corrections
to the Kahler potential for general Calabi-Yau compactifications and their effect on the
scalar potential. The aim has been to extract the parametric dependence on the moduli
that control the loop expansion. We have contributed to put the proposed form of leading
order string loop corrections on firmer grounds in the sense that they agree with the low-
energy effective action behaviour. In particular, it is reassuring that the Coleman-Weinberg
formula for the scalar potential fits well with that arising from the BHP conjecture for the
corrections to the Kéhler potential. Furthermore, the non-contribution of the leading order
string loop correction is no longer an accident but it is just a manifestation of the underlying
supersymmetry with equal number of bosons and fermions, despite being spontaneously
broken.

These results are important for Kahler moduli stabilisation. In particular, even though
the string loop corrections to the Kahler potential are subdominant with respect to the
leading order o/ contribution, they can be more important than non-perturbative superpo-
tential corrections to stabilise non blow-up moduli. The general picture is that all correc-
tions - o/, loop and non-perturbative - play a role in a generic Calabi-Yau compactification.
We will discuss these matters in more detail in a forthcoming companion article [J].
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A. Survey of moduli stabilisation mechanisms

We have seen that the no-scale structure of the scalar potential will be broken by several

contributions which will lead to the following general form
— KK w
V= Vnp + ‘/(a’) + ‘/(gs) + Vv(gs) + Viocal + Vb, (Al)

where V;,;, and V{4 are given by (R.24)), and Véfs §< and V(I;:) are the perturbative contri-
butions from the string loop corrections (B.13) and (B.13). Vipeal is the potential generated
by extra local sources and Vp is the usual D-term scalar potential for N=1 supergravity

1 _1\o8 Wi
Vip) = 3 <(Ref) 1) DoDg, Do = [Kz + W] (Ta)i; ©5- (A-2)

We now review moduli stabilisation mechanisms proposed in the literature in order to
illustrate the importance of having a deeper understanding of the string loop corrections.

From the expression (P.24)) we realise that

Vip ~ e (W2, + WoWoy) | V, ~ S WEK, (A.3)
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where in general we have

Vo = Ve + VST + Vi (A1)

for the full perturbative contributions to the scalar potential. Let us explore the possible
scenarios which emerge by varying Wy. As stressed in section P.J, we can trust the use
of solely the leading perturbative corrections to the scalar potential only when the overall
volume is stabilised at large values V > 1. The first systematic study of the strength of
perturbative corrections to the scalar potential was in RJ]. Neglecting Véfs §< , V(ZZ), Viocal
and V(py, [B9] studied the behaviour of the minima of the scalar potential when one varies
|[Wo|. Their results are summarized in the following table:

1) [Wol ~ [Whpl < 1| 2) [Wapl < [Wol <1 3) Wyl < [Wol ~0(1) \
“/(a/)‘ << |Vnp| |Vnp| = “/(Cv/) |Vnp| << “/(0/) ‘

< |V

L [Wol ~ [Wiy| <1 = V(o)

/| Vapl ~ [0K (o)

This case is the well-known KKLT scenario [24]. All moduli are stabilised by non-
perturbative corrections at an AdS supersymmetric minimum with DpW = 0. A

~1V KL = [V

shortcoming of this model is that Wy must be tuned very small in order to stabilise
at large volume and neglect o or other perturbative corrections. KKLT gave the
following fit for the one-parameter case:

Wo=-10"% A=1, ax~21/60 = (r)~113+=V ~1.2-10°. (A.5)

In addition to |[Wp| < 1, a large rank gauge group (as in SU(60) above) is also
necessary to get ar > 1. This is a bit inelegant but a lower rank of the gauge group
would imply a much worse fine tuning of Wj. The authors also proposed a mechanism
to uplift the solution to dS, by adding a positive potential generated by the tension of
D3 branes. This represents an explicit breaking within 4D supergravity. Remaining
within a supersymmetric effective theory, [R§ proposed using D-term uplifting to
keep manifest supersymmetry whereas [2(] instead proposed F-term uplifting using
metastable supersymmetry breaking vacua. Also [B7 pointed out that the KKLT
procedure in two steps (first the minimisation of S and U, at tree level and then T;
fixed non-perturbatively) can miss important contributions such as a dS minimum

without the need to add any up-lifting term.

We finally notice that this mechanism also relies on the assumption that W, de-
pends explicitly on each K&hler modulus. In the fluxless case, this assumption is
very strong as only arithmetic genus 1 cycles [BJ] would get stringy instanton con-
tributions and D7 brane deformation moduli would remain unfixed. The presence of
the corresponding extra fermionic zero modes can prevent gaugino condensation and
in general could also destroy instanton contributions for non-rigid arithmetic genus 1
cycles. However by turning on fluxes, the D7 moduli should be frozen and the arith-
metic genus 1 condition can be relaxed. Therefore it is possible that also non-rigid
cycles admit nonperturbative effects.
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2. (Wl < [Wol <1=> [Vian|/ IVl ~ 5K an| /Wl [Wol ~ 1 <= [Vigl = Vi

[B3] pointed out that there is an upper bound on the |Wy| in order to find a KKLT
minimum |[Wy| < Wiax. Whax is the value of |Wy| for which the leading o/ correc-
tions start becoming important and compete with the non-perturbative ones to find
a minimum. This minimum will be non-supersymmetric as we can infer from look-
ing at (2224) which implies that V ~ O(1/V3) at the minimum, while —3eX [W|* ~
O(1/V?). Now since the scalar potential is a continuous function of |Wjy|, increasing
|[Wo| from |[Wy| = Winax — €, where we have an AdS supersymmetric minimum, to
|[Wo| = Winax+e¢, will still lead to an AdS minimum which is now non-supersymmetric.
Subsequently, when |Wy| is further increased, the o/ corrections become more and
more important and the minimum rises to Minkowski and then de Sitter and finally
disappears. The disappearance corresponds to the o/ corrections completely domi-
nating the non-perturbative ones and the scalar potential is just given by the last
term in (R.24) that has clearly a runaway behaviour without a minimum.

Unfortunately there is no clear example in the literature that realizes this situation
for V > 1. In their analysis 23 considered the possibility of getting a Minkowski
minimum for the quintic Calabi-Yau (CP[%,LLLI} (x = —200), giving the following fit

Wy = —1.7, A=1, a=2r/10, £ =04, Re(S) =1
= (M xb<=Vx>2 (A.6)

We note that this example, in reality, belongs to the third case since |Wy| ~ O(1)
where we claimed that no minimum should exist. That is true only for ¥V > 1 but in
this case V ~ 2 and the higher o corrections cannot be neglected anymore. Moreover

with g5 ~ 1 the string loop expansion is uncontrolled.

3. |Wnp| < |W0| ~ 0(1) = “/(a’){/|vnp| ~ {5K(a’){/|Wnp| > 1 = {V(a’){ > |Vnp|

This is the more natural situation when |[Wy| ~ O(1). In this case if we ignore
the non-perturbative corrections and keep only the o’ ones no minimum is present.
However there are still Véfj( , V(I;Z), Viocal and Vp. Thus, let us see two possible

scenarios

(a) Vip neglected, V() + Vigeal considered
Bobkov [29] considered F-theory compactifications on an elliptically-fibered
Calabi-Yau four-fold X with a warped Calabi-Yau three-fold M that admits
a conifold singularity at the base of the fibration. Following the procedure pro-
posed by Saltman and Silverstein [P§] for flux compactifications on products of
Riemann surfaces, he added np7 additional pairs of D7/D7-branes and n; extra
pairs of (p,q) 7/7-branes wrapped around the 4-cycles in M placed at the loci
where the fiber T2 degenerates. These extra local sources generate positive ten-

sion and an anomalous negative D3-brane tension contribution to Vjyca which,

,27,



in units of (o), reads

g2 g3
+n7 “— | +npr | == |, (A7)
NE NE

where Vg is the string frame volume and N; = (n‘})7 —i—n‘;’) is an effective
parameter given in terms of triple intersections of branes. By varying the
various parameters, this is argued to give a discretuum of large-volume non-
supersymmetric AdS, Minkowski and metastable dS vacua for Calabi-Yau three-
folds with hj; = 1 (this implies x < 0). The fit proposed is for the dS solution:

[Wol =~ (27)® Nawx > 1, X = —4, Naux =3, n7 = 1, np7 = 73,
gs ~5-107° = VY~3.10% (A.8)

The integer parameters are tuned to obtain a pretty small g so that the effect
of string loop corrections can be safely neglected. In this scenario, in which
supersymmetry is broken at the Kaluza-Klein scale, the stabilisation procedure
depends on local issues, while we would prefer to have a more general framework
where we could maintain global control.

Vip neglected, V(g + Véfs g( + V(ZZ) considered

Berg, Haack and Kérs [ff], following their exact calculation of the loop corrections
for the N=1 toroidal orientifold T°/(Zg x Zs) analyzed if these corrections could
compete with the o/ ones to generate a minimum for V. By treating the three
toroidal Kihler moduli in 76 = T2 x T? x T? on an equal footing they reduce
the problem to a 1-dimensional one. They neglect Vg[s( K as it is suppressed by
higher powers of the dilaton and compare just V,, and V;ZV The schematic form

of the scalar potential is
E|Wo|? 0
~ s T Y10/3”

It turns out that 6 > 0, and so as £ ~ —Yx, they need a positive Euler number

V

(A.9)

X > 0 in order to find a minimum, while the T°/(Zy x Zs) toroidal example has
a negative Euler number. They instead consider the N=1 toroidal orientifold
T8/ Zg that satisfies the condition x > 0. A non-supersymmetric AdS minimum
is now present but as the loop corrections are naturally subleading with respect
to the o ones, they must fine tune the complex structure moduli to get large
volume. They find

[Wo| ~ O(1), Re(U) ~650, Re(S) =10
— (1)~ 10? <=V ~ 10°. (A.10)

The fine-tuning comes from assuming the complex structure moduli are sta-
bilised at large values. A similar scenario has been studied also by von Gersdorff
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and Hebecker [[4]. In addition, Parameswaran and Westphal [B{] studied the
possibility to have a consistent D-term uplifting to de Sitter in this scenario.

4. We have assumed above that when |Wy| ~ O(1) perturbative corrections always dom-
inate non-perturbative ones, which can therefore be neglected. But is this naturally
always the case? In order to answer this question, let us now consider scenarios in
which V,,, and V|,/) compete while [Wp| ~ O(1).

(a) V(Ig(s §< + V(I;:) neglected, Vy, + V() considered = large volume
This situation was studied by Westphal [B1] following the work of Balasubra-
manian and Berglund, finding a dS minimum at large volume for the quintic.
However this result extends to other Calabi-Yau three-folds with just one Kéahler
modulus. He presents the following fit

Wo = —1.7, A=1, a=2r/100, £€=79.8, Re(S)=1
= (1) =52 <=V ~ 376. (A.11)

The non-perturbative corrections are rendered important by using a large-rank
gauge group SU(100) for gaugino condensation. This is not fine-tuned but is
contrived. The loop corrections, which may be important, are not considered

here.

(b) V(Ig(s §< + V(I;:) neglected, Vy, + V(o) considered = exponentially large volume

This situation is appealing since it provides a positive answer to our basic ques-
tion. Balasubramanian, Berglund and two of the present authors [§] developed these
scenarios which now go under the name of Large Volume Models, which is a bit mis-
leading as large volume is always necessary to trust a solution. They should be more
correctly called LARGE Volume Models because the volume is exponentially large.
In this framework, both non-perturbative and o’ corrections compete naturally to get
a non-supersymmetric AdS minimum of the scalar potential at exponentially large
volume. This is possible by considering more than one Kéhler modulus and taking a
well-defined large volume limit. For one modulus models, the work of 23] and [B]]|
shows that with the rank of the gauge group SU(N) in the natural range N ~ 1+ 10,
it is impossible to have a minimum.

However, if we have more generally hi; > 1, this turns out to be possible. The

simplest example of such models is for the hypersurface (CP[4 The overall

1,1,1,6,9]"
volume in terms of 2-cycle volumes is given by

V = — (3tits + 18t1t2 + 36t3) (A.12)

1
6
and the 4-cycle volumes take the form

2 (t1 +6t5)°

A A3
2’ 2 ’ ( )

T4 =
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for which it is straightforward to see that

V= % (Tg’/z—Tj/2> . (A.14)
The reason why 74 and 75 are considered instead of 71 and 75 as outlined in section P.1],
is that these are the only 4-cycles which get instanton contributions to W when fluxes
are turned off [BJ]. As we will describe in our companion paper [, to get LARGE
Volume Models, we require that W, depends only on blow-up modes which resolve
point-like singularities, as 74 in this case. Such cycles are always rigid cycles and thus
naturally admit nonperturbative effects. If we now take the large volume limit in the

following way

74 small, (A.15)
5 > 1, '

the scalar potential looks like

A\ /Tre 20474 ToE H4TA v
~ 4 _ UT4

V= Vap + Vi) y vr T ye

A, p, v constants  (A.16)

with a non-supersymmetric AdS minimum located at

1/3
Ty~ (46)*? and YV~ 571’42/0’6““4. (A.17)

The result that we have found confirms the consistency of our initial assump-
tion (JA.15) in taking the large volume limit. Inserting in following natural choice

of parameters, we find

Wo = 1, Ay=1, ag=27/7, £=1.31, Re(S) =10
= (ry) ~ 41l <=V ~3.75-10". (A.18)

Therefore 74 is stabilised small whereas 75 > 1, and the volume can be approximated
as

)

V2 (A.19)

and
T4 ™~ t%, Ts ~ t%. (A20)

Looking at ([A.17) we can realise why in this case we are able to make Vip and Vg
compete naturally. In fact, in general Vi) ~ 1/V? and V,,, ~ %™ /Y2 but (A.17)
implies Vp,, ~ 1/ V3~ V(o). The non-perturbative corrections in the big modulus
75 will be, as usual, subleading. An attractive feature of these models is that they
provide a method of generating hierarchies. In fact the result (A.1§), for Mp ~ 2.4
10 GeV, produces an intermediate string scale

M, ~ =L 10" GeV, A21
N, (421
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and this can naturally give rise to the weak scale through TeV-scale supersymmetry
M
Moogy ~ mgjy = e/ [W| ~ TP ~ 30 TeV. (A.22)

This setup naturally fixes all the moduli while generating hierarchies. However, it
ignores further perturbative corrections as the gs; ones. It is thus crucial to check if
they do not destroy the picture. Berg, Haack and Pajer applied their guess (B.19)
to derive these string loop corrections to the Kéhler potential. From (B.12) it is
straightforward to get”

CKK\/T_4 CKK\/T—5

SKEE 4 > A.23

) ~ Re(S)V | Re(S)V’ (A.23)

SKIY | ~ i + ol . (A.24)
@) ™ Re(S) ymV "~ Re(S) TV

The corrections (JA.23) turn out to yield subleading corrections to the scalar potential
of the form )
ri | _(CEF) WG
) " Re(5)?V3/m
even if one tries to fine tune the coefficients CI*¥ pretty large, CK¥ ~ 20 + 40. We
therefore conclude that the LARGE Volume Scenario is safe.

+ OV, (A.25)

This survey of moduli stabilisation mechanisms has shown that a deeper understanding
of string loop corrections to the Kéahler potential in Calabi-Yau backgrounds is highly
desirable. In KKLT stabilisation, the magnitude of the perturbative corrections is what
determines the regime of validity of the stabilisation method. In all other methods of
stabilisation, perturbative corrections enter crucially into the stabilisation procedure, and
so not only o’ but also gs corrections should be taken into account.

These loop corrections are neglected in the cases (3a), (4a) and (4b), but we learnt from
the case (3b) that they can change the vacuum structure of the system studied. However
in this situation a significant amount of fine tuning was needed to make them compete
with the o' corrections to produce a minimum at large volume. In case (4b), the loop
corrections did not substantially affect the vacuum structure unless they were fine-tuned
large. Therefore one would tend to conclude that these string loop corrections will in
general be subdominant and so that it is safe to neglect them.

While this may be true for models with relatively few moduli, we will see in [[J] that loop
corrections can still play a very important réle in moduli stabilisation, in particular lifting
flat directions in LARGE Volume Models. In this case the fact that they are subdominant
will turn out to be a good property of these corrections since they can lift flat directions
without destroying the minimum already found in the other directions of the Kéahler moduli

space.

"We note that in this case, as argued by Curio and Spillner [@]7 6K(V;S) is absent, because in (CPﬁ’LLG’g]
there is no intersection of the divisors that give rise to nonperturbative superpotentials if wrapped by D7
branes.
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